CEM-101, a Novel Ketolide: In Vitro Activity Against Resistant Strains

of Streptococcus pneumoniae and Haemophilus influenzae

J. DUBOIS1*, P. FERNANDES 2

¹ M360, Sherbrooke, Canada, ² Cempra Pharmaceuticals Inc., Chapel Hill, USA

Abstract

Objective: CEM-101 is a promising fluoroketolide that has potent activity against respiratory tract pathogens resistant to other macrolide agents. Its activity against a variety of resistant strains of Streptococcus pneumoniae and Haemophilus influenzae was investigated. Methods: The in vitro activity of CEM-101 was compared with that of telithromycin, azithromycin, erythromycin, levofloxacin and doxycycline against a total of 199 resistant S. pneumoniae and 191 resistant H. influenzae by agar dillution procedures (CLSI, MT-AT, M100-S18). The tested strains included S. pneumoniae erythromycin-resistant (em B genotype; 107 isolates and mefi genotype; 54) and ciprofloxacin-resistant (gyrA and parC genotype; 38) and also H. influenzae eryresistant (erm A,B,C genotype; 138) and cipro-resistant (gyrA and parC

Results: Against S. pneumoniae ery-resistant strains (ermB genotype), the activity of CEM-101 (MIC90 1mg/L) and levofloxacin (MIC90 2mg/L) was superior to the macrolides tested; telithromycin (MIC90 4mg/L). azithromycin (MIC90 ≥64 mg/L), erythromycin (MIC90 ≥64 mg/L)) and doxycycline (MIC90 32 mg/L). Against S. pneumoniae ery-resistant (mefE genotype) group, CEM-101 (MIC90 0.25 mg/L) was the most active agent followed by levofloxacin (MIC90 2mg/L), telithromycin (MIC90 8 mg/L), doxycycline (MIC90 16 mg/L), azithromycin (MIC90 ≥64 mg/L) and erythromycin (MIC90 ≥64 mg/L). Against S. pneumoniae cipro-resistant (gyrA and parC genotype) group, CEM-101 (MIC90 0.25) mg/L) was also the most active agent tested followed by telithromycin (MIC90 1 mg/L), levofloxacin (MIC90 2mg/L), doxycycline (MIC90 16 mg/L), azithromycin (MIC90 ≥64 mg/L) and erythromycin (MIC90 ≥64 mg/L), Against H, influenzae erv-resistant (ermA.B.C genotype) strains. CEM-101 (MIC90 4 mg/L) was the most active macrolide tested followed by telithromycin (MIC90 16 mg/L), azithromycin (MIC90 16 mg/L) and erythromycin (MIC90 ≥64 mg/L). Against H. influenzae ciproresistant (gyrA and parC genotype) group, CEM-101 (MIC90 2 mg/L) was slightly more active than telithromycin (MIC90 4 mg/L) and levofloxacin (MIC90 4 mg/L).

Conclusions: These data confirm the interesting activity of the new fluoroketolide **CEM-101** against resistant *Streptococcus pneumoniae* and *Haemophilus influenzae*.

Introduction

CEM-101 is a novel fluoroketolide antibacterial agent related to 14membered ring macrolides. CEM-101 appears to exhibit superior ability to bind to the ribosomes dimethylated at A2058 by the action of emmethyltransferase

In susceptibility studies, CEM-101 is appreciably more potent than most macrolides or azalides against many Gram-positive organisms, including resistant Streptococcus pneumoniae, Streptococcus pyogenes and Staphylococcus spp. It has potent activity against various atypical respiratory pathogens like Legionella pneumophila, Mycoolasma spp. and Chlamydia spp.

Objective

We determined the minimum inhibitory concentration (MIC) of **CEM-101**, telithromycin, azithromycin, erythromycin, levofloxacin and doxycycline against a variety of *Streptococcus pneumoniae* and *Haemophilus influenzae* strains isolated from patient sources.

Materials and Methods

Strains

- A variety of recent strains (1995-2008) of Streptococcus pneumoniae and Haemophilus influenzae were isolated, mostly from upper or lower respiratory tract or blood culture.
- Multiple cultures from the same patient or source were excluded unless a change in organism or antibiogram was noted.
- Organisms were identified by standard methods such as described by Murray et al (1).

Microorganisms Number of tested		strains	
Streptococcus penumoniae		199	
-Erythromycin-resistant (mef	E genotype)	107	
-Erythromycin-resistant (<i>erm</i> -Ciprofloxacin-resistant	B genotype)	54	
(gyrA and parC genotype)		38	
Haemophilus influenzae		191	
-Erythromycin-resistant (erm/-Ciprofloxacin-resistant	A, B, C genotype)	138	
(gyrA and parC genotype)		53	

Determination of MICs

- MICs were determined using the CLSI agar dilution method (2, 3), with replicate plating of the organisms onto a series of agar plates of increasing concentrations from 0.004 mg/L to 64 mg/L.
- Mueller-Hinton agar was used as the medium against S. aureus strains.
- Staphylococcus aureus ATCC25923 and Escherichia coli ATCC25922 were included as controls.

Determinations of genotype mec A, ermA, B, C, mefE and gyrA and parC

- · Genomic DNA was isolated as described by Smith et al (4)
- Multiplex PCR was performed with primers specific for mec A, ermA, ermB, ermC and mefE as described by Sutcliffe et al (5)
- Multiplex PCR was performed with primers specific for gyrA and parC as described by Gonzalez et al (6)

Results

TABLE 1. Susceptibility of Streptococcus pneumoniae

		MIC (mg/L)		
Organism (no. tested) A	ntibiotic	Range	50%	90%
S. pneumoniae	CEM-101	0.016-2	0.25	
Erythromycin-R	Telithromycin	0.06-32	1	4
mef E (107)	Azithromycin	4-≥64	≥64	≥64
` '	Erythromycin	0.06-≥64	≥64	≥64
	Levofloxacin	0.25-2	1	2
	Doxycycline	0.06-32	16	32
S. pneumoniae	CEM-101	0.008-2	0.06	0.25
Erythromycin-R	Telithromycin	0.12-8	0.25	8
erm B (54)	Azithromycin	0.008-≥64	4	≥64
	Erythromycin	0.06-≥64	16	≥64
	Levofloxacin	0.5-2	1	2
	Doxycycline	0.12-32	4	16
S. pneumoniae	CEM-101	0.016-0.25	0.03	0.25
Ciprofloxacin-R	Telithromycin	0.06-2	0.12	1
gyrA, parC (38)	Azithromycin	0.12-≥64	0.25	≥64
	Erythromycin	0.12-≥64	0.25	≥64
	Levofloxacin	1-4	2	2
	Doxycycline	0.06-32	0.5	16

Results continued

TABLE 2. Susceptibility of Haemophilus influenzae

Organism (no. tested) A	Antibiotic	MIC (mg/L)		
Organism (no. tested) P	THIDIOUC	Range	50%	90%
H influenzae	CEM-101	0.12-8	4	4
Erythromycin-R	Telithromycin	0.25-≥64	8	16
erm A,B,C (138)	Azithromycin	0.12-≥64	8	16
	Erythromycin	0.25-≥64	32	≥64
	Levofloxacin	0.008-0.016	0.016	0.0
	Doxycycline	0.12-2	0.5	0.5
H. influenzae	CEM-101	0.12-4	1	2
Ciprofloxacin-R	Telithromycin	0.25-16	2	4
gyrA, parC (53)	Azithromycin	0.25-8	1	2
	Erythromycin	0.25-16	1	2
	Levofloxacin	1-8	2	4
	Doxycycline	0.03-0.5	0.25	0.5

Discussion

30 th ECCMID, Vienna, Austria Jacques Dubois Ph.D.

idubois@m360.ca

M360, Sherbrooke, Québec, Canada 819.571.4366 fax 819.843.1391

- CEM-101 showed significant activity (MIC₉₀ ≤1 mg/L) against categorized Streptococcus pneumoniae strains, including strains that were resistant to macrolides (erm B or mef E genotype) or quinolones.
- Against erythromycin-resistant (erm B genotype) S. pneumoniae, CEM-101 was significantly superior to the antibiotics tested: tellthromycin, azithromycin and erythromycin, doxycycline and levofloxacin
- When S. pneumoniae ciprofloxacin-resistant (gyrA and parC genotype) strains were treated with CEM-101, this new macrolide exerted greater activity (MIC₉₀ 0.25 mg/L) and was superior to doxycycline. This observation was not seen with the other tested macrolides.
- The activity (MIC₉₀ 4 mg/L) of CEM-101 was clearly superior to all macrolides tested (MIC₉₀ ≥16 mg/L) against erythromycin-resistant H. I nfluenzae (ermA, B, C genotype).

Conclusion

- CEM-101 shows a broad spectrum of activity against the most commonly isolated resistant strains of S. pneumoniae or H. influenzae isolated from respiratory tract infections.
- With favorable pharmacokinetics in humans, CEM-101 should be a valuable oral compound for the treatment of upper or lower respiratory tract infections caused by S. pneumoniae or H. influenzae that are resistant to standard oral macrolides or quinolones.
- Clinical studies should undertaken to evaluate the in vivo effectiveness of this new antimicrobial agent.

References

- Murray et al., Manual of Clinical Microbiology, 9rd ed., 2007, A.S.M. Chap. 28; 390-411.
- Performance standards for antimicrobial susceptibility testing; 18th Informational Supplement; M100-S18, Clinical and Laboratory Standards Institute (CLSI), Wayne, PA, January 2008
- Method for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard 17th edition, M7-A7, Clinical and Laboratory Standards Institute (CLSI), Wayne, PA, 2006)
- 4. Smith et al, Antimicrob. Ag. Chemo.; 37, 1938-1944, 1993
- Sutcliffe et al, Antimicrob. Ag. Chemo.; 40, 2562-2566, 1996
- 6. Gonzalez et al, Antimicrob. Ag. Chemo.; 42, 2792-2798, 1998